

Tulane Professor Quincy Brown named National Academy of Inventors Fellow

December 12, 2025 9:00 AM Stacey Plaisance
splaisance@tulane.edu

J. Quincy Brown is the inaugural Mark and Diana Tipton Endowed Professor at Tulane University School of Science and Engineering and a member of the Tulane Cancer Center's Translational Oncology Research Program. (Photo by Kenny Lass)

Tulane University biomedical engineering professor [J. Quincy Brown](#) has been named a 2025 fellow of the [National Academy of Inventors](#) (NAI) for his groundbreaking work developing cutting-edge imaging technologies that will save lives by making cancer easier to detect, understand and treat.

In 2024, Quincy's Tulane-based project, [MAGIC-SCAN](#), received national attention with a presidential visit and up to \$23 million in funding from the Advanced Research Projects Agency for Health (ARPA-H), a bipartisan effort to advance high-impact biomedical research. The goal of MAGIC-SCAN is to give doctors the ability to confirm — within minutes after surgery — that they have removed all remnants of cancer from the surgery site. Being named a National Academy of Inventors Fellow is further recognition of the value of Brown's work, as it is the highest professional distinction awarded solely to inventors.

"Quincy Brown is an extraordinary innovator whose work is redefining what is possible in the fight against cancer," Tulane President Michael A. Fitts said. "With determination and a profound sense of purpose, he has translated breakthrough ideas into technologies that promise to transform care and give hope to cancer patients around the world. Quincy's work is a prime example of the breadth and impact of Tulane research and his relentless pursuit reflects the goal of our mission, which is as simple as it is bold — to improve and save lives."

Brown is the inaugural Mark and Diana Tipton Endowed Professor at Tulane University School of Science and Engineering and a member of the Tulane Cancer Center's Translational Oncology Research Program. He holds 27 patents covering groundbreaking optical imaging technologies for medical diagnostics. His patents include foundational work in spectral tissue analysis, automated biopsy processing systems and digital pathology tools capable of imaging entire cancer tumors within minutes. Together, these technologies shorten diagnosis times, reduce repeat surgeries, improve surgical precision and enable more personalized cancer care.

Brown grew up in Columbia, a town with a population of 277 in Northeast Louisiana. He earned his PhD in biomedical engineering from Louisiana Tech University in 2005, where he pioneered implantable optical microsensors for diabetic monitoring. He continued his work in cancer imaging as a National Institutes of Health (NIH) National Research Service Award (NRSA) Postdoctoral Fellow at Duke University, conducting research that still informs his technologies today. Since joining Tulane in 2012, Brown has risen from assistant professor to professor in the School of Science and Engineering and director of the Center for Aging Spatial Multiomics Core. His scholarship includes 53 peer-reviewed publications with more than 5,300 citations, reflecting sustained scientific impact.

"When I was growing up, I always dreamed of one day becoming an 'inventor,' but never in my wildest dreams could I have imagined being counted among the National Academy of Inventors," Brown said. "I am extremely humbled and honored by this, but more importantly, I am grateful to have been able to work alongside many brilliant people along the way who have helped bring these ideas and technologies to life. I hope that the inventions that come out of our work are able to contribute meaningfully to society, which would be the ultimate honor."

Senior Vice President for Academic Affairs and Provost Robin Forman said Brown "exemplifies the very ideal of the university inventor — identifying a serious challenge to our well-being, imagining an extraordinarily creative, technically challenging solution and assembling a cohort of leading researchers to make it a reality. This is a modern example of the type of impactful research that Tulane was founded to carry out, so it is tremendously rewarding to see that the vision set in place in 1834 for the role of our university is still attracting preeminent researchers like Quincy Brown and creating an environment in which their brilliance can flourish."

In 2017, Brown co-founded Instapath Inc. with former PhD students Peter Lawson, David Tulman and Mei Wang to commercialize his cancer imaging innovations. The company has raised millions in investment and is advancing three product lines that convert tissue samples into digital images in minutes without cutting or destroying them. Instapath is also collaborating with Brown's team on the MAGIC-SCAN system.

"Quincy Brown's induction into the National Academy of Inventors honors his talent for transforming scientific research into technologies that improve health care," said Kimberly Gramm, David and Marion Mussafer Chief Innovation and Entrepreneurship Officer at the Tulane Innovation Institute. "By leading the ARPA-H MAGIC-SCAN project and bringing discoveries to market through Instapath Inc., he exemplifies the curiosity, rigor and dedication of an NAI Fellow. The Tulane Innovation Institute and the Office of Intellectual Property Management proudly support his efforts to advance cancer care at Tulane."

The National Academy of Inventors includes U.S. and international universities and research institutes. The 185 members of the 2025 class of National Academy of Inventors boasts more than 5,300 U.S. patents and includes recipients of the Nobel Prize and other prestigious honors.

"Quincy's work is a prime example of the breadth and impact of Tulane research and his relentless pursuit reflects the goal of our mission, which is as simple as it is bold

- to improve and save lives."

President Michael A. Fitts